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An Adaptive Multiresolution Approach to the
Simulation of Planar Structures

P. Pirinoli and G. Vecchi

Abstract—An efficient approach for the full-wave analysis of
printed structures is presented. It is based on the use of vector
multiresolution (MR) functions in conjunction with the impedance
matrix compression (IMC) technique, which leads to a reduced set
of iteratively selected basis functions. The multilevel structure of
the functions makes the matrix compression possible and also al-
lows its further sparsification, with the subsequent reduction of the
computational time and the matrix memory occupancy. Numerical
results confirm the efficiency of the technique.

Index Terms—Adaptive schemes, multiresolution, planar struc-
tures, printed circuits.

I. INTRODUCTION

A new approach has been recently introduced [1] for the
method of moments (MoM) analysis of printed structures.

It is based on the generation of multiresolution (MR) vector
functions that result in a fast convergence of iterative solvers, but
especially in the possibility of drastically sparsifying the MoM
matrix.

The MR functions are intrinsically multilevel and hierarchical
in each region of the structure, i.e., one achieves a finer resolu-
tion byaddingfunctions belonging to higher levels. This makes
the use of MR ideally suited to adaptive iterative schemes, i.e.,
which “select” the “minimum” set of basis functions necessary
to achieve a given accuracy. This is contrasted to standard (e.g.,
rooftop or RWG) bases, in which a refinement step requires a
different mesh and different functions over the entire region in-
volved in the refinement, with minimal re-use of the MoM ma-
trix computed at the previous step.

In this work, we combine the vector MR functions introduced
in [1] and the adaptive iterative basis functions selection in-
troduced in [2], [3], termed “impedance matrix compression”
(IMC). The resulting scheme is applied to the analysis of printed
structures.

The IMC was devised for the solution of scattering problems
and employs the properties of the (scalar) wavelet functions to
iteratively select only the basis functions needed to describe the
solution to within a certain accuracy. The class of problems of
interest here have some important differences from those con-
sidered in [2], [3], notably the vector nature of the current and
the presence of subwavelength geometrical details. This makes
the application of the original IMC procedure not straightfor-
ward: the main issues and changes that have to be introduced
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are reported in Section III. The numerical results reported in the
Section IV will demonstrate the efficiency of the obtained pro-
cedure. Preliminary results were presented in [4].

II. BACKGROUND

We begin by briefly summarizing the IMC procedure in [2],
[3]. The selection of the “minimum” set of basis functions fol-
lows an iterative refinement process: at each step, one deter-
mines a set of basis functions that has a better resolution than
that at the -th step; numerical efficiency requires that the
set at step includes the set of step . In this way, the
MoM matrix at step is obtained from that at step by
computing only the term related to the newly introduced terms.

The iterative procedure starts with an initial set of basis func-
tions, which is assumed to be a “significant enough” set for de-
scribing the current. Solving for the coefficients of only these
functions, one gets a crude approximation of the solution cur-
rent; using it, an “error signal” is computed, which describes the
error in complying with the boundary-condition requirements of
the EM problem. This error signal is then analyzed and gives in-
dications as to which functions should be added to generate the
set of basis functions at the-th step. The process is repeated
with the enlarged set of functions, and the procedure continues
until a small enough error signal is reached.

In [1], the hierarchical generation of the MR functions is de-
scribed in detail for an arbitrary shape structure, discretized with
a rectangular mesh (the technique is not limited to this case);
here, we give only a summary.

The MR basis functions are generated by dividing the
unknown surface current into its solenoidal (TE) and non-
solenoidal (qTM) components, that can be mapped to scalar
quantities that are “isotropic,” i.e., whjch have the same degree
of regularity in all directions of the space. The proposed MR
functions are defined first on these isotropic scalar quantities
and then mapped back onto their TE and qTM vector counter-
parts.

The structure is first divided into the minimum possible
number of (rectangular) subdomains and the MR basis func-
tions are constructed inside each of them. These subdomains
represent the cells of the mesh at the coarsest level, onto
which “connecting functions” are generated, that need not be
multiresolution.

The generation procedure can be interpreted as the construc-
tion of functions of almost identical shape but dilated or con-
tracted to fit onto (nested) meshes of different cell sizes. The
obtained set is hierarchical and makes the MR basis functions
locally ordered in spatial resolution. This is of great importance
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in the IMC method, since one knows that adding functions of
(one or more) higher levels the accuracy is certainly increased.

III. IMC W ITH VECTORMR FUNCTIONS

In using the MR functions into the IMC scheme, the first issue
to be considered is the presence in the solution of the qTM
and TE parts, which have completely different behaviors and
roles. The iterative adding of MR functions belonging to dif-
ferent levels has to be performed separately for the qTM and
TE bases. In the analysis of printed structures, qTM terms are
dominant, so one can start to select first the qTM functions and
then add the TE, which are responsible for the current behavior
near the edges. As concerns the “initial” set, the natural choice
is to use the connecting, coarsest-level functions, and, in par-
ticular, the qTM ones, which are dominant and defined on the
whole structure; they give a first approximation of the solution
and account for a large portion of the solution energy.

IMC aims at finding the “minimum” set of necessary basis
functions; the associated MoM matrix has a “minimum” order,
and the issue of matrix sparsity is not originally considered. The
original version of IMC is very efficient for scattering problems,
with electrically large bodies with large smooth sections, e.g., a
rectangular plate, where fine-level details in the solution appear
only in a small portion of the structure, e.g., at the edges of a
plate. In typical printed structures, subwavelength-detailed fea-
tures are very dense, and these details dominate over electrical
size even in large structures like printed arrays. This makes the
original version of IMC considerably less efficient than in scat-
tering problems, since a lot of fine-scale functions are neces-
sary throughout the structure. However, advantage may be taken
here of the fact that basis functions with different scales, as in
the MR system, interact via different wave phenomena. Func-
tions belonging to coarser level meshes have spectra localized
at low spatial frequencies and, therefore, are the responsible for
the coupling between “far” portions of the overall structure (e.g.,
two radiators in an array). On the contrary, the functions defined
on finer meshes are necessary in representing the local and rapid
variation of the current (for instance near edges, discontinuities),
but they give a small contribution to the coupling between sep-
arate elements. This means that the matrix obtained with IMC
can be further sparsified by “clipping” the matrix entries that do
not give significant contributions. This, however, requires sta-
bility with respect to the perturbations introduced by the clip-
ping; this is precisely what the MR scheme in [1] allows. In the
following, the “compression ratio” of the matrix is defined as

, where is the order of the “uncompressed”
matrix (standard rooftop approach), is the number of iter-
atively selected functions, i.e., the order of the “compressed”
matrix, and is, therefore, the number of entries of this latter.
If the compressed matrix is further sparsified, is substituted
for the number of nonzero entries of the sparsified com-
pressed matrix (still of dimension ).

As to the numerical efficiency, the described procedure
reduces the matrix filling and solution time and the matrix
memory occupation. Since the IMC reduces the number of
unknowns of a factor , the memory occupation of
the compressed matrix is times less than with the

Fig. 1. Bandpass filter. Frequency behavior ofS-parameters; solid line:
rooftop basis; square marks: MR functions+ IMC + sparsification; circle
marks: MR functions+ sparsification. Inset: analyzed configuration.

standard MoM approach. The subsequent sparsification of
the matrix further decreases the memory occupation, and
both sparsification and compression reduce the linear system
solution time. The sparsification can also lead to a further
reduction of the fill time, but this requires further manipulation:
work on this subject is in progress [5], and not considered here.

Finally, we note that one is usually interested in the frequency
behavior of a printed circuit, and, typically, the mesh is the same
for all frequency points. We can conjecture that the IMC set of
necessary functions is essentially the same for the whole fre-
quency sweep. Thus, the iterative procedure can be applied for
solving the problem in the MR basis only at one frequency point
(e.g., at the upper end of the band): the reduced number of se-
lected dominant functions are then used for the solution of the
problem at all the other frequency points. The consequent saving
in the selection overhead results in an increase of the efficiency
of the approach. Likewise, the nonzero entries of the sparsified
matrix are almost the same over the frequency sweep; therefore,
it is sufficient to seek the indices of the matrix entries above the
threshold in correspondence to one or two frequency points and
then compute only these entries at all the other frequency points.

IV. RESULTS

The MR-IMC scheme has been applied to the analysis of dif-
ferent planar printed structures (on a rectangular mesh). In all
cases, the solution obtained with this procedure is compared
with that obtained using the conventional subdomain rooftop
functions without any matrix compression or sparsification that
is taken as reference.

As a first example, we have analyzed the edge-coupled
band-pass filter sketched in the inset of Fig. 1. The total number
of unknowns used to discretize the current on the filter is rather
large, , despite of the simplicity of the structure, but
it is necessary to accurately represent the coupling between the
three lines that constitute the filter. In fact, the gap between
two adjacent lines is , where is the guided
wavelength at the frequency GHz (the substrate is 1.6
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Fig. 2. 4� 2 patch array. Frequency behavior ofS ; solid line: rooftop
basis; the dashed line: MR functions+ IMC + sparsification. Inset: analyzed
configuration.

mm high and has ) and the overlap between the access
lines and the central conductor is ,
where is the total length of the central conductor. Since,
in this case, no connecting functions are necessary, the initial
set of the functions for the iterative procedure is made by the
qTM functions defined on the coarsest rectangular meshes.
The IMC procedure reduces the number of unknown of about
a quarter, i.e., . The limited performance of
IMC is essentially due to the reasons explained in Section
III, i.e., the compression procedure eliminates the functions
that are “redundant” for representing the solution; due to the
tight coupling between the lines, a large number of details
are necessary to represent the solution and, therefore, all the
(high frequency) functions in proximity of the coupling regions
have large amplitudes and cannot be discarded. Nevertheless,
as pointed out in Section III, the IMC matrix can be further
sparsified, setting to zero the entries that represent the interac-
tion between high frequency functions defined on far domains.
This sparsification of the compressed matrix strongly reduces
the number of nonzero entries (compression ratio %
in this example), leaving the accuracy of the solution almost
unaffected. The scattering parameters obtained after this further
matrix manipulation are reported in Fig. 1, together with
the reference (rooftop functions). The frequency behavior of

resulting from the application of IMC sparsification
(using the MR basis) is undistinguishable from the reference
solution, and the displacement of is below 0.1 dB in-band
and within 0.8 dB at the extreme points of sweep range. For
comparison, Fig. 1 also shows the results obtained with the
direct sparsification of the uncompressed matrix in MR basis;
these refer to the choice of a threshold for matrix sparsification
that yields (approximately) the same number on nonzero entries
as with the compression sparsification procedure. The results
show that the IMC sparsification approach is more accurate
that the sparsification alone.

Finally, in Fig. 2, the results relative to the 42 patch array
in the inset are shown. In this case, the number of unknowns in
the rooftop basis is ; the IMC procedure reduces them

to and the further sparsification of the compressed
matrix leaves only the 7% of nonzero entries, i.e., %.
The curves in Fig. 2 show that the resonance frequency of the
structure obtained with this reduced matrix is virtually undistin-
guishable from the reference, and the values of are within
0.6 dB from the reference solution.

In the examples shown, IMC yields , thereby
reducing the fill time to ; the subsequent matrix sparsifica-
tion reduces the matrix storage to typically %.
In addition, the method reduces the computational effort needed
to solve the system for each frequency point of almost one order
of magnitude of flops (floating point operation) with respect to
the reference solution. The overhead needed for the matrix com-
pression that is, however, carried out only once has to then be
added; for ten frequency points, the total saving of flops with re-
spect to the solving of the problem in rooftop basis is 50–70%.
Note that these are relatively small-size problems, and that the
advantage increases with the problem size and the number of
involved frequency points.

V. CONCLUSION

The MR scheme introduced in [1] for printed structures fits
well into the iterative impedance matrix compression (IMC)
introduced in [2], [3]. The compression procedure is completely
automatic, i.e., once the desired level of accuracy is fixed,
no user intervention is needed. However, in typical printed
structures, the IMC compression rate is moderate. Efficiency is
regained by subsequent sparsification of the obtained matrix,
which is granted by the properties of the employed MR basis.
The results obtained with the compressionsparsification
procedure are more accurate than those reachable with direct
sparsification of the MoM matrix in the MR basis [1].

Moreover, due to the multilevel structure of the MR functions,
in the iterative procedure, the requested accuracy can be mod-
ified during the process, without having to restart the process.
Note, finally, that the automatic adaptation of the scheme makes
it particularly profitable for the analysis of complex structures,
with many details, because it automatically adds fine-level func-
tions only in proximity of the most critical regions.
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