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An Adaptive Multiresolution Approach to the
Simulation of Planar Structures

P. Pirinoli and G. Vecchi

Abstract—An efficient approach for the full-wave analysis of are reported in Section Ill. The numerical results reported in the

printed structures is presented. It is based on the use of vector Section IV will demonstrate the efficiency of the obtained pro-
multl_resolutlon (MR) functions in conjunction with the impedance cedure. Preliminary results were presented in [4].

matrix compression (IMC) technique, which leads to a reduced set

of iteratively selected basis functions. The multilevel structure of

the functions makes the matrix compression possible and also al- Il. BACKGROUND

lows its further sparsification, with the subsequent reduction of the

computational time and the matrix memory occupancy. Numerical We begin by briefly summarizing the IMC procedure in [2],

results confirm the efficiency of the technique. [3]. The selection of the “minimum” set of basis functions fol-
Index Terms—Adaptive schemes, multiresolution, planar struc- lows an iterative refinement process: at each stepne deter-
tures, printed circuits. mines a set of basis functions that has a better resolution than

that at theg'n — 1)-th step; numerical efficiency requires that the
set at stepr includes the set of stef: — 1). In this way, the
MoM matrix at stepn is obtained from that at stgp — 1) by
A new approach has been recently introduced [1] for theymputing only the term related to the newly introduced terms.
method of moments (MoM) analysis of printed structures. The jterative procedure starts with an initial set of basis func-
It is based on the generation of multiresolution (MR) vectaons, which is assumed to be a “significant enough” set for de-
functions that resultin a fast convergence of iterative solvers, Rigiping the current. Solving for the coefficients of only these
especially in the possibility of drastically sparsifying the MoMuynctions, one gets a crude approximation of the solution cur-
matrix. rent; using it, an “error signal” is computed, which describes the

The MR functions are intrinsically multilevel and hierarchicabyror in complying with the boundary-condition requirements of
in each region of the structure, i.e., one achieves a finer resolje EM problem. This error signal is then analyzed and gives in-
tion byaddingfunctions belonging to higher levels. This makegjications as to which functions should be added to generate the
the use of MR ideally suited to adaptive iterative schemes, i.gt of basis functions at theth step. The process is repeated
which “select” the “minimum” set of basis functions necessaRyjith the enlarged set of functions, and the procedure continues
to achieve a given accuracy. This is contrasted to standard (e.gil a small enough error signal is reached.
rooftop or RWG) bases, in which a refinement step requires ajn [1], the hierarchical generation of the MR functions is de-
different mesh and different functions over the entire region iRgriped in detail for an arbitrary shape structure, discretized with
volved in the refinement, with minimal re-use of the MOM may rectangular mesh (the technique is not limited to this case);
trix computed at the previous step. here, we give only a summary.

In this work, we combine the vector MR functions introduced The MR basis functions are generated by dividing the
in [1] and the adaptive iterative basis functions selection iQmknown surface current into its solenoidal (TE) and non-
troduced in [2], [3], termed “impedance matrix compressiorgplenoidal (GTM) components, that can be mapped to scalar
(IMC). The resulting scheme is applied to the analysis of printefantities that are “isotropic,” i.e., whjch have the same degree
structures. of regularity in all directions of the space. The proposed MR

The IMC was devised for the solution of scattering problemignctions are defined first on these isotropic scalar quantities

and employs the properties of the (scalar) wavelet functionsdqq then mapped back onto their TE and gTM vector counter-
iteratively select only the basis functions needed to describe thgs

solution to within a certain accuracy. The class of problems of The structure is first divided into the minimum possible

interest here have some important differences from those coimper of (rectangular) subdomains and the MR basis func-
sidered in [2], [3], notably the vector nature of the current anghns are constructed inside each of them. These subdomains
the presence of subwavelength geometrical details. This makgsresent the cells of the mesh at the coarsest level, onto
the application of the original IMC procedure not straightforghich “connecting functions” are generated, that need not be
ward: the main issues and changes that have to be introdug§éliresolution.
The generation procedure can be interpreted as the construc-
Manuscript received June 4, 2001; revised November 13, 2001. The revii@n of functions of almost identical shape but dilated or con-
of this letter was arranged by Associate Editor Dr. Shigeo Kawasaki. tracted to fit onto (nested) meshes of different cell sizes. The
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in the IMC method, since one knows that adding functions of %
(one or more) higher levels the accuracy is certainly increased

rooftop
-4r -0-6 MR: IMC + sparsification
(mtx compres. = 93%)
| -©-@-MR: direct sparsification
(mtx compres. = 92%)

lll. IMC W ITH VECTORMR FUNCTIONS

dB

Inusing the MR functions into the IMC scheme, the firstissue -
to be considered is the presence in the solution of the qTI\/ )
and TE parts, which have completely different behaviors anc
roles. The iterative adding of MR functions belonging to dif- ~ _o}
ferent levels has to be performed separately for the gTM anc
TE bases. In the analysis of printed structures, qTM terms ari -12f
dominant, so one can start to select first the qTM functions anc
then add the TE, which are responsible for the current behavio
near the edges. As concerns the “initial” set, the natural choice ¢ , ‘ ‘
is to use the connecting, coarsest-level functions, and, in par 46 46 47 48 4-?reque5ncy G, > % %4 88
ticular, the gTM ones, which are dominant and defined on the '
whole structure; they give a first approximation of the solutiofg. 1. Bandpass fiter. Frequency behavior $fparameters; solid line:
and account for a large portion of the solution energy. rooftop basis; square marks: MR functioss IMC + sparsification; circle

IMC aims at finding the “minimum” set of necessary basig\arks: MR functionst sparsification. Inset: analyzed configuration.
functions; the associated MoM matrix has a “minimum” order,

and the issue of matrix sparsity is not originally considered. Tkgandard MoM approach. The subsequent sparsification of
original version of IMC is very efficient for scattering problemsthe matrix further decreases the memory occupation, and
with electrically large bodies with large smooth sections, e.g.path sparsification and compression reduce the linear system
rectangular plate, where fine-level details in the solution appeslution time. The sparsification can also lead to a further
only in a small portion of the structure, e.g., at the edges ofréduction of the fill time, but this requires further manipulation:
plate. In typical printed structures, subwavelength-detailed fegork on this subject is in progress [5], and not considered here.
tures are very dense, and these details dominate over electric@inally, we note that one is usually interested in the frequency
size even in large structures like printed arrays. This makes thehavior of a printed circuit, and, typically, the mesh is the same
original version of IMC considerably less efficient than in scafor all frequency points. We can conjecture that the IMC set of
tering problems, since a lot of fine-scale functions are necesecessary functions is essentially the same for the whole fre-
sary throughout the structure. However, advantage may be takgiency sweep. Thus, the iterative procedure can be applied for
here of the fact that basis functions with different scales, asdolving the problem in the MR basis only at one frequency point
the MR system, interact via different wave phenomena. Fung.g., at the upper end of the band): the reduced number of se-
tions belonging to coarser level meshes have spectra localizested dominant functions are then used for the solution of the
at low spatial frequencies and, therefore, are the responsiblegesblem at all the other frequency points. The consequent saving
the coupling between “far” portions of the overall structure (e.dn the selection overhead results in an increase of the efficiency
two radiators in an array). On the contrary, the functions definedlthe approach. Likewise, the nonzero entries of the sparsified
on finer meshes are necessary in representing the local and rapédrix are almost the same over the frequency sweep; therefore,
variation of the current (for instance near edges, discontinuitieg)is sufficient to seek the indices of the matrix entries above the
but they give a small contribution to the coupling between sefhreshold in correspondence to one or two frequency points and

arate elements. This means that the matrix obtained with IMGen compute only these entries at all the other frequency points.
can be further sparsified by “clipping” the matrix entries that do

not give significant contributions. This, however, requires sta-
bility with respect to the perturbations introduced by the clip-
ping; this is precisely what the MR scheme in [1] allows. In the The MR-IMC scheme has been applied to the analysis of dif-
following, the “compression ratio” of the matrix is defined as ferent planar printed structures (on a rectangular mesh). In all
C =1— N2 /N?, whereN is the order of the “uncompressed’cases, the solution obtained with this procedure is compared
matrix (standard rooftop approachy. is the number of iter- with that obtained using the conventional subdomain rooftop
atively selected functions, i.e., the order of the “compressefiinctions without any matrix compression or sparsification that
matrix, andVZ. is, therefore, the number of entries of this latteis taken as reference.
If the compressed matrix is further sparsifiéé is substituted ~ As a first example, we have analyzed the edge-coupled
for the numberV,, of nonzero entries of the sparsified comband-pass filter sketched in the inset of Fig. 1. The total number
pressed matrix (still of dimensioN¢s x N¢). of unknowns used to discretize the current on the filter is rather
As to the numerical efficiency, the described procedutarge, N = 846, despite of the simplicity of the structure, but
reduces the matrix filling and solution time and the matriit is necessary to accurately represent the coupling between the
memory occupation. Since the IMC reduces the number thiree lines that constitute the filter. In fact, the gap between
unknowns of a factorNco/N, the memory occupation of two adjacent lines i€7 = 0.024),, where ), is the guided
the compressed matrix iSV-/N)? times less than with the wavelength at the frequengy= 5.2 GHz (the substrate is 1.6

<o
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to N = 1300 and the further sparsification of the compressed
matrix leaves only the 7% of nonzero entries, i@.= 93%.

The curves in Fig. 2 show that the resonance frequency of the
structure obtained with this reduced matrix is virtually undistin-
guishable from the reference, and the valuelsSef| are within

0.6 dB from the reference solution.

In the examples shown, IMC yield&/~/N)? ~ 0.5, thereby
reducing the fill time tol /2; the subsequent matrix sparsifica-
tion reduces the matrix storage to typicalifc /N)? ~ 10%.

In addition, the method reduces the computational effort needed
to solve the system for each frequency point of almost one order
of magnitude of flops (floating point operation) with respect to
the reference solution. The overhead needed for the matrix com-
pression that is, however, carried out only once has to then be
added; for ten frequency points, the total saving of flops with re-
spect to the solving of the problem in rooftop basis is 50-70%.
Note that these are relatively small-size problems, and that the
advantage increases with the problem size and the number of
involved frequency points.
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Fig. 2. 4x 2 patch array. Frequency behavior §f;; solid line: rooftop
basis; the dashed line: MR functioasIMC + sparsification. Inset: analyzed
configuration.

mm high and has, = 2.17) and the overlap between the access V. CONCLUSION

lines and the central conductor ¢ = 0.36\, = 0.75L., . : , ,
where L. is the total length of the central conductor. Since The MR scheme introduced in [1] for printed structures fits

S : . . .\M?II into the iterative impedance matrix compression (IMC)
in this case, no connecting functions are necessary, the init| . . :
roduced in [2], [3]. The compression procedure is completely

! . . ; n
set of the functions for the iterative procedure is made by the S . o

. . automatic, i.e., once the desired level of accuracy is fixed,
gTM functions defined on the coarsest rectangular meshes.

fo” user intervention is needed. However, in typical printed

The IMC procedure reduces the number of unknown of abou{ : . . .
. L structures, the IMC compression rate is moderate. Efficiency is
a quarter, i.e.No ~ 0.75N. The limited performance of

: . . . .regained by subsequent sparsification of the obtained matrix,
IMC is essentially due to the reasons explained in Sec“%v%ich is granted by the properties of the employed MR basis.

ll, i.e., the compression procedure eliminates the functior:ﬁ1e results obtained with the compressiensparsification

that are “redundant” for representing the solution; due to the S
. X . rocedure are more accurate than those reachable with direct
tight coupling between the lines, a large number of details

are necessary to represent the solution and, therefore, all ?Rarsmcatmn of the MoM matrix in the MR basis [1].

(high frequency) functions in proximity of the coupling regions oreover, due to the multilevel structure of the MR functions,
have large amplitudes and cannot be discarded Neverthelm the iterative procedure, the requested accuracy can be mod-

. . . . fied during the process, without having to restart the process.
as pointed out in Section lll, the IMC matrix can be furthe : . .
o : . : ote, finally, that the automatic adaptation of the scheme makes
sparsified, setting to zero the entries that represent the mterzilc- . : :
. . . : ~ It particularly profitable for the analysis of complex structures,
tion between high frequency functions defined on far domains, . . . X
. o . with many details, because it automatically adds fine-level func-
This sparsification of the compressed matrix strongly reduch : s . .
. . . ions only in proximity of the most critical regions.
the number of nonzero entries (compression rétia~ 93%
in this example), leaving the accuracy of the solution almost
unaffected. The scattering parameters obtained after this further
matrix manipulation are reported in Fig. 1, together with The authors would like to acknowledge the cooperation of Dr.
the reference (rooftop functions). The frequency behavior gf Baharav in adapting the IMC to the MR basis.

|S11] resulting from the application of IMG- sparsification
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(using the MR basis) is undistinguishable from the reference
solution, and the displacement|&%; | is below 0.1 dB in-band i
and within 0.8 dB at the extreme points of sweep range. For
comparison, Fig. 1 also shows the results obtained with the
direct sparsification of the uncompressed matrix in MR basis; 2]
these refer to the choice of a threshold for matrix sparsification
that yields (approximately) the same number on nonzero entries]
as with the compression sparsification procedure. The results
show that the IMG+ sparsification approach is more accurate 4]
that the sparsification alone.

Finally, in Fig. 2, the results relative to the<2 patch array
in the inset are shown. In this case, the number of unknowns ir{sl
the rooftop basis i&/ = 1947; the IMC procedure reduces them
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